

20 MW Flywheel Energy Storage Plant

Case Study for the:

Advanced Energy 2010 Conference

Chet Lyons, Director, Marketing and Sales

November 8 - 9, 2010

This presentation contains forward-looking statements, including the Company's beliefs about its business prospects and future results of operations. These statements involve risks and uncertainties. Among the important additional factors that could cause actual results to differ materially from those forward-looking statements are risks associated with the overall economic environment, the successful execution of the Company's plan of operation, changes in the Company's anticipated earnings, continuation of current contracts, changes in energy and other applicable regulations, and other factors detailed in the company's filings with the Securities and Exchange Commission, including its most recent Forms 10-K and 10-Q. In addition, the factors underlying Company forecasts are dynamic and subject to change and therefore those forecasts speak only as of the date they are given. The Company does not undertake to update them; however, it may choose from time to time to update them and if it should do so, it will disseminate the updates to the investing public.

Company Overview

- We provide flywheel-based frequency regulation to utility industry as a:
 - Merchant service provider
 - Seller of turnkey plants
- Operating in ISO-NE since Nov. 2008
- 60 MW under development (merchant)
 - \$43M DOE loan guarantee
 - \$24M DOE stimulus grant
 - Pennsylvania has budgeted \$5M grant for a 20 MW flywheel plant
- \$2.25M DOE ARPA-E grant award to develop a 1-hr. flywheel for wind and solar ramping, peak demand limiting

20 MW plant in Stephentown, NY

Technology

- Up to 17 times better than fossil generators
- Zero energy storage degradation
- 20-year design life
- 125,000 equivalent cycles
- Zero emissions
- Available à la carte
- Low operating cost

1 MW / 250 kWh Module

• Ten 100kW / 25 kWh flywheels

- Transformers and support equipment
- Electronics and controls inside container 4

1st 20 MW Flywheel Regulation Plant NYISO – New York Grid Operator

- Stephentown, NY
- Broke ground Nov 2009
- Matching equity raised Dec 09
- \$43M DOE loan guarantee closed Aug 2010
- Interconnection agreement signed
- First revenue Q4 2010
- Full capacity Q1 2011

NY-ISO and NY PSC participated in groundbreaking

Gen 4 Flywheel in Production

Ramping Up Production

Construction Underway

On Time and On Budget

Wind Ramping

Solar Shading

Solar energy sources are highly variable

16 hours

31 days

Impact of 20% Wind Penetration in Eastern Interconnection

"Load Only" is today's regulation requirement

Scenarios 1,2,3 show different mixes of onshore, off-shore and regional mixes for 20% wind penetration

Scenario 4 is 30% wind penetration

For 20% wind penetration, the average increase in forecasted need for regulation resources is several hundred percent...

<u>Source</u>: EASTERN WIND INTEGRATION AND TRANSMISSION STUDY, January 2010 Prepared for NREL by: EnerNex Corporation Knoxville, Tennessee, NREL Technical Monitor: David Corbus, Prepared under Subcontract No. AAM-8-88513-01

NY ISO Forecasts Regulation Needs

Regulation Req. vs. Wind Level

 As shown in the graph below, the average regulation requirement increases approximately 9% for every 1,000MW increase between the 4,250MW and 8,000MW wind penetration level.

Requirement increases by 60% with 10% wind

Benefits of Fast Regulation

Fast response flywheels 2 to 17 times more effective than slow resources

*Source: Makarov, Y.V., et al. "Assessing the Value of Regulation Resources Based on Their Time Response Characteristics." Pacific Northwest National Laboratory, PNNL – 17632, June 2008

ISO-NE Pilot Program Empirical Data

• Flywheels 4x better at meeting regulation requirements

ISO-NE's mileage payment (sum of up and down movement) pays resources for providing more regulation service to the grid

Lower CO₂ Emissions

Source: KEMA study: CO₂ Reduction for 20 MW of Storagebased Regulation over 20-year operating life

Flywheel regulation has zero direct CO₂ emissions

FERC Supports "Pay for Performance"

 Testimony before the Senate Energy Committee by FERC Chairman Jon Wellinghoff, December 10, 2009:

"Regarding compensation, some storage technologies appear able to provide a nearly instantaneous response to regulation signals, in a manner that is also more accurate than conventional resources. These two characteristics can reduce the size and hence overall expense, of the regulation market. Most existing tariffs or markets do not compensate resources for superior speed or accuracy of regulation response, *but such payment may be appropriate in the future* []."

FERC Commissioner Philip D. Moeller visits Beacon Power on December 10, 2009

Paying for Speed = Ratepayer Benefits

Traditional Regulation method Same signal all resources				"Fast first" method Dispatch and Pay based on Response Speed									
Ramp Rate	RCP	Awarded Reg	Reg Service	Total Payment	\$/MW	Ramp Rate	RCP	Awarded Reg	Reg Service	Reg Payment	Service Payment	Total Payment	\$/MW
Average	\$36	20 MW	200 MW	\$720	\$36	Average	\$18	20 MW	200 MW	\$360	\$360	\$720	\$36
Average	\$36	20 MW	200 MW	\$720	\$36	Average	\$18	20 MW	200 MW	\$360	\$360	\$720	\$36
Fast	\$36	20 MW	200 MW	\$720	\$36	Fast	\$18	20 MW	600 MW	\$360	\$1,080	\$1,440	\$72
Slow	\$36	20 MW	200 MW	\$720	\$36	Slow	\$18	20 MW	0 MW	\$360	\$0	\$360	\$18
Slow	\$36	20 MW	200 MW	\$720	\$36	Slow	\$18	20 MW	0 MW	\$360	\$0	\$360	\$18
Total Market	\$36	100 MW	1,000 MW	\$3,600	\$36	Total Market	\$18	60 MW	1,000 MW	\$1,080	\$1,800	\$2,880	\$48
												20% 52	vinas

"Fast First" method results in same Regulation effectiveness with less overall cost for ratepayers Example: 20% savings in cost, 40% savings in MWs procured

Frees Up 40 MW of capacity to provide energy or other reserves

Flywheels vs. Batteries

	Flywheels	Batteries	Comment
Equivalent charge/discharge cycles	125,000	?	8,760 equivalent charge / discharge cycles/yr. needed in New York State for storage- based regulation
Design life	20+ years	?	EPRI survey shows that utilities want 15-year minimum equipment life
Energy storage capacity degradation	Zero	?	Battery systems must be refreshed / replaced

- Batteries will be challenged by high cyclic demand of storage-based tariffs
- Initial capital cost of batteries will be a fraction of total lifetime CapX costs
- Project financing for batteries may be harder (replacement costs uncertain)
- Batteries may be less attractive to vertical utilities whose return on equity is based on initial capital cost (operating cost is a "pass through" expense)

ISO-NE Cyclic Content

$Annual \ equivalent \ cycles = \frac{annual \ injected \ energy}{storage \ capacity}$

- Rated Power: 1MW
- Storage Capacity: 0.25 MWh / cycle
- Measured injection of energy into grid: 1,575 MWh / year
- Regulation plant life: 20 years

Annual equivalent cycles =
$$\frac{1,575}{0.25}$$
 = $\frac{6,300 \text{ cycles / year}}{0.25}$

Historical data from Beacon Power's operation of 3 MWs under ISO-NE Pilot Program regulation dispatch algorithm ~ 125,000 cycles in 20 years

Key Elements: Market Rules for Limited Energy Storage Resources

- Create Energy Storage resource category
- Allow to provide Regulation Service only
- Utilizes storage's fast ramping capability
- Net Energy Settlement provision for storage
 - Hourly Energy Settlement = (Injections Withdrawals) * LMP
- Enable storage to utilize 5-minute energy market to schedule energy into/out of the resource to maintain stored energy level ("state-of-charge")
 - Normally the system can provide full regulation in both directions
 - When empty provide "Up Reg" like DR; when full provide "Down Reg" like Generator

NYISO Regulation Control Algorithm

Figure 4: LESR Regulation Deployments

(1) LESR is not storage constrained	AGC allocates maximum ACE to the LESR assuming no regulation ramp rate constraints		
(2) LESR is approaching a maximum storage limitation	(a) AGC will allocate +ACE to an LESR constrained by the unit regulation response rate		
	(b) AGC will allocate -ACE to the maximum accepted capability of the LESR without ramp constraints		
(3) LESR has reached the maximum storage limitation	(a) When this condition is reached, +ACE will not be allocated for the remainder of the RTD interval		
	(b) AGC will allocate – ACE to the maximum accepted capability of the LESR without ramp constraints		
(4) LESR is approaching the minimum storage limitation	(a) AGC will allocate -ACE to an LESR constraining the allocation by the unit regulation response rate		
	(b) AGC will allocate +ACE to the maximum accepted capability of the LESR without ramp constraints		
(5) LESR has reached the minimum storage limitation	(a) When this condition is reached, -ACE will not be allocated for the rest of the RTD interval.		
	(b) AGC will allocate + ACE to the maximum accepted capability of the LESR without ramp constraints		

NYISO Area Control Error (Historical)

Time [mins]	ACE [MW]	AGC Signal [MW] (Simulated)	Regulated Power [MW] (Simulated)	Σ Injections [MWh]	Σ Withdrawals [MWh]
0.00	43.00	-1.00	-1.00	0.00	0.00
0.10	34.00	-1.00	-1.00	0.00	0.00
0.20	21.00	-1.00	-1.00	0.00	-0.01
0.30	10.00	-0.50	-0.50	0.00	-0.01
0.40	19.00	-0.95	-0.95	0.00	-0.01
0.50	30.00	-1.00	-1.00	0.00	-0.01
0.60	24.00	-1.00	-1.00	0.00	-0.01
0.70	-2.00	0.10	0.10	0.00	-0.01
0.80	24.00	-1.00	-1.00	0.00	-0.01
0.90	34.00	-1.00	-1.00	0.00	-0.01
1.00	65.00	-1.00	-1.00	0.00	-0.02
1.10	30.00	-1.00	-1.00	0.00	-0.02
1.20	51.00	-1.00	-1.00	0.00	-0.02
1.30	20.00	-1.00	-1.00	0.00	-0.02
1.40	23.00	-1.00	-1.00	0.00	-0.02
1.50	13.00	-0.65	-0.65	0.00	-0.02
1.60	25.00	-1.00	-1.00	0.00	-0.03
1.70	43.00	-1.00	-1.00	0.00	-0.03
1.80	47.00	-1.00	-1.00	0.00	-0.03
1.90	29.00	-1.00	-1.00	0.00	-0.03
2.00	30.00	-1.00	-1.00	0.00	-0.03
2.10	36.00	-1.00	-1.00	0.00	-0.03
2.20	45.00	-1.00	-1.00	0.00	-0.04
2.30	53.00	-1.00	-1.00	0.00	-0.04
2.40	93.00	-1.00	-1.00	0.00	-0.04
2.50	96.00	-1.00	-1.00	0.00	-0.04
2.60	93.00	-1.00	-1.00	0.00	-0.04
2.70	115.00	-1.00	-1.00	0.00	-0.04
2.80	129.00	-1.00	-1.00	0.00	-0.05
2.90	158.00	-1.00	-1.00	0.00	-0.05
3.00	120.00	-1.00	-1.00	0.00	-0.05
3.10	156.00	-1.00	-1.00	0.00	-0.05
3.20	130.00	-1.00	-1.00	0.00	-0.05
3.30	132.00	-1 00	-1 00	0.00	-0.05

NYISO Cyclic Content Simulation

NYISO Cyclic Content Calculation

Annual equivalent cycles = $\frac{annual injected energy}{storage capacity}$

- Rated Power: 1MW
- Storage Capacity: 0.25 MWh / cycle
- Measured injection of energy into grid: 2,190 MWh / year
- Regulation plant life: 20 years

Annual equivalent cycles =
$$\frac{2,190}{0.25}$$
 = 8,760 cycles / year

NYISO's regulation dispatch algorithm will be even more demanding than ISO-NE's Pilot Program...

~ 175,000 cycles in 20 years

Frequency Regulation of the Future

Adding wind creates the need for more regulation capacity...

Regulation Req. vs. Wind Level

 As shown in the graph below, the average regulation requirement increases approximately 9% for every 1,000MW increase between the 4,250MW and 8,000MW wind penetration level.

Frequency Regulation of the Future?

We want to integrate more wind, but does this really make sense?

Beacon

P

Frequency Regulation of the Future

Zero-emissions storage-based regulation is a better performing, more costeffective resource... an ideal match for clean renewable energy...

Thank You!

Chet Lyons Director, Marketing and Sales

T: 978-661-2831 E: Lyons@beaconpower.com

